Binärcodierung

Mit fünf Fingern anders zählen

Normalerweise kannst du mit fünf Fingern nur bis Fünf zählen. Wenn du die Zahlen jedoch anders codierst, kommst du locker bis 31. Dabei nutzt du einfach die Binärcodierung.

Kleiner Finger	Ringfinger	Mittelfinger	Zeigefinger	Daumen
24	2 ³	2 ²	2 ¹	2°
16er	8er	4er	2er	1er

Beispiele

10001: 1*16 + 0*8 + 0*4 + 0*2 + 1*1 = 17**01111:** 0*16 + 1*8 + 1*4 + 1*2 + 1*1 = 15

Alle Zahlen hintereinander

Aufgabe 1: Sieh dir die folgende Animation an und versuche dann selbständig von 0 bis 31 mit einer Hand zu zählen.

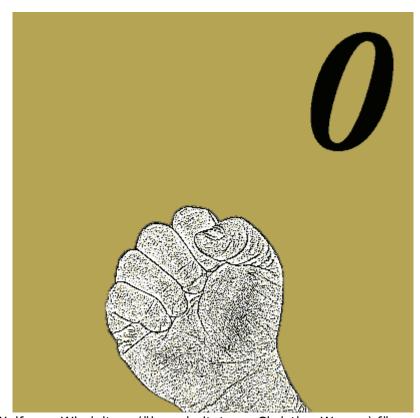


Abbildung 1: Bild: Wolfgang Wimleitner (überarbeitet von Christian Wurzer) für www.digikomp.at

Aufgabe 2:

Sobald du mit einer Hand binär zählen kannst, verwende auch die zweite Hand und setze die Zahlenfolge mit 32, 64, 128, 256 und 512 (2⁵, 2⁶, 2⁷, 2⁸, 2⁹) fort. So kannst du mit beiden Händen Zahlen bis 1023 darstellen.

Bits und Bytes

Ein Bit ist eine Stelle einer Binärzahl und die kleinste Speichereinheit in Computern. Ein Bit kann den Wert 0 oder 1 besitzen. Ein Byte ist die zweitkleinste Speichereinheit von Computern und besteht aus 8 Bit.

	27	2 ⁶	2 ⁵	2 ⁴	2 ³	2 ²	2 ¹	2°
Zahl	128er	64er	32er	16er	8er	4er	2er	1er
10	0	0	0	0	1	0	1	0
24	0	0	0	1	1	0	0	0

Aufgabe 3:

- Schreibe die Zahlen 34, 78, 101 und 13 als Byte im Binärsystem.
- Was ist die größte Zahl, die du mit einem Byte darstellen kannst?

Binär addieren

Man kann binär auch schriftlich addieren - dabei gilt:

0+0=0

0+1=1

1+1 = Überlauf (1 in der nächsten Stelle)

Beispielrechnung:

0	0	0	0	1	0	1	0
0	0	0	1	1	0	0	0

======

00010010

Aufgabe 4:

- Überprüfe die Beispielrechnung, indem du die Bytes ins Dezimalsystem umrechnest.
- Addiere folgende Bytes schriftlich: 01001011 + 00111010 prüfe deine Rechnung durch Umrechung ins Dezimalsystem.

https://schule.riecken.de/ Printed on 2025/10/18 02:34

Schwierig: Das Hexadezimalsystem (16er)

In der IT-Technik wird sehr oft das Hexadezimalsystem zur Basis 16 verwendet.

16 ³	16 ²	16 ¹	16°
4096er	256er	16er	1er

Man braucht zum Füllen der Spalten 16 Zahlen, die man mit arabischen Ziffern allein nicht mehr darstellen kann. Daher nimmt man die Buchstaben A(10), B(11), C(12), D(13), E(14), F(15) mit dazu.

Beispiel:

16 ³	16 ²	16 ¹	16°
4096er	256er	16er	1er
0	Α	5	Е

0*4096 + 10*256 + 5*16 + 14*1 =**2654**

Aufgabe 5:

- a) Wie musst du folgende Zahlen im Hexadezimalsystem schreiben: 10000, 675, 56, 22734?
- b) Wie viele Ziffern brauchst du im Hexadezimalsystem, um den kompletten Zahlenraum eines Byte abzudecken?

Lösung

Aufgabe 5a

1000010

- 2×4096 = 8192 (Rest: 1808)
- $7 \times 256 = 1792$ (Rest: 16)
- $1 \times 16 = 16$ (Rest: 0)

Ergebnis: **0271**₁₆

16 ³	16 ²	16 ¹	16°
4096er	256er	16er	1er
2	7	1	0

675₁₀

- 0x4096 = 0
- $2 \times 256 = 512$ (Rest: 163)
- Ax16 = 160 (Rest: 3)
- $3 \times 1 = 3$ (Rest: 0)

Ergebnis: 02A3₁₆

16 ³	16 ²	16 ¹	16°
4096er	256er	16er	1er
0	2	Α	3

56₁₀

• 0x4096 = 0

• 0x256 = 0

• $3 \times 16 = 48$ (Rest: 8)

• $8 \times 1 = 8$ (Rest: 0)

Ergebnis: **0038**₁₆

16 ³	16 ²	16 ¹	16°
4096er	256er	16er	1er
0	0	3	8

22734₁₀

• 5×4096 = 20480 (Rest: 2254)

• $8 \times 256 = 2048$ (Rest: 6)

0x16 = 0 (Rest: 6)6x1 = 6 (Rest: 0)

Ergebnis: **5806**₁₆

16 ³	16 ²	16 ¹	16°
4096er	256er	16er	1er
5	8	0	6

Aufgabe 5b

Man muss bis 255₁₀ kommen.

255₁₀

• Fx16 = 240 (Rest: 15)

• F*1 = 15 (Rest: 15)

Ergebnis: FF₁₆

Man braucht für den vollen Zahlenbereich eines Byte also nur zwei Ziffern im Hexadezimalsystem.

From:

https://schule.riecken.de/ - Unterrichtswiki

Permanent link

https://schule.riecken.de/doku.php?id=informatik:datenspuren:binaer

Last update: 2024/09/05 13:14