
2026/02/07 22:32 1/7 Binärbäume

Unterrichtswiki - https://schule.riecken.de/

Binärbäume

Bäume sind ein sehr gutes Beispiel dafür, wie man mit Hilfe der Objektorientierung sehr eleganten
Code schreiben kann. Wir betrachten an dieser Stelle vollständige und volle Binärbäume, weil diese in
der Implementierung am einfachsten zu handhaben sind.

Grundbegriffe

Ein Baum besteht aus Knoten. Ganz oben befindet sich der Wurzelknoten. Mit ihm sind im Falle
eines Binärbaumes zwei Blattknoten verbunden. Die Verbindung zwischen den Knoten bezeichnet
man als Kante. Die Information, welche Blattknoten mit dem Wurzelknoten verbunden sind, befindet
sich nur im Wurzelknoten. Der Wurzelknoten „zeigt“ damit auf die Blattknoten, weswegen man die
Kante auch als gerichtet bezeichnet.

Hier eine einfache Implementierung in Python:

simplenode.py

class Node:
 def __init__(self) -> None:
 self.left = None
 self.right = None

die drei Knoten erstellen
wurzel = Node()
blattlinks = Node()

https://schule.riecken.de/lib/exe/fetch.php?media=informatik:algorithmisch:python:tree_basics.png
https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:python:binaerbaeume&codeblock=0

Last
update:
2024/07/20
14:35

informatik:algorithmisch:python:binaerbaeume https://schule.riecken.de/doku.php?id=informatik:algorithmisch:python:binaerbaeume&rev=1721486137

https://schule.riecken.de/ Printed on 2026/02/07 22:32

blattrechts = Node()

Verweise vom Wurzelknoten auf die Blätter erstellen (Baum aus den
Knoten bauen)
wurzel.links = blattlinks
wurzel.rechts = blattrechts

Normalerweise trägt ein Knoten nicht nur Information darüber, welche anderen Knoten mit ihm
verbunden sind, sondern speichert zusätzlich Daten. Das werden wir weiter unten bei den Gewichten
von Kanten noch in einer Anwendung sehen.

Spezialfall Binärbäume

Ein Binärbaum besitzt immer zwei Blattknoten an einem übergeordneten Knoten. Bei einem
vollständigen Binärbaum sind zum alle Ebenen komplett ausgefüllt:

Alle denkbaren Bäume (mit z.B. mehr Blättern pro Knoten) lassen sich durch Umhängen von Knoten
zu einem Binärbaum umformen, der jedoch dann nicht immer vollständig ist.

https://schule.riecken.de/lib/exe/fetch.php?media=informatik:algorithmisch:python:binary_full-tree.png
https://schule.riecken.de/lib/exe/fetch.php?media=informatik:algorithmisch:python:binary_full-tree.png
https://schule.riecken.de/lib/exe/fetch.php?media=informatik:algorithmisch:python:binary_transformation.png
https://schule.riecken.de/lib/exe/fetch.php?media=informatik:algorithmisch:python:binary_transformation.png

2026/02/07 22:32 3/7 Binärbäume

Unterrichtswiki - https://schule.riecken.de/

Kanten und Gewicht

Eine Kante kann ein Gewicht bekommen, das z.B. angibt, wie wahrscheinlich es ist, dass Daten, die in
einem Baum gespeichert sind, aufeinander folgen.

Auf diese Weise könnte in einem Sprachmodell hinterlegt sein, wie wahrscheinlich es ist, welches
Wort auf den Satzanfang „Es“ folgt. Hier einmal ein Beispielimplementierung für den letzten Baum.

treedataweighted.py

class Node:
 def __init__(self, data) -> None:
 self.left = None
 self.right = None

https://schule.riecken.de/lib/exe/fetch.php?media=informatik:algorithmisch:python:tree_data_weight.png
https://schule.riecken.de/lib/exe/fetch.php?media=informatik:algorithmisch:python:tree_data_weight.png
https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:python:binaerbaeume&codeblock=1

Last
update:
2024/07/20
14:35

informatik:algorithmisch:python:binaerbaeume https://schule.riecken.de/doku.php?id=informatik:algorithmisch:python:binaerbaeume&rev=1721486137

https://schule.riecken.de/ Printed on 2026/02/07 22:32

 self.leftweight = 0
 self.rightweight = 0
 self.data = data

Array für die Knoten des Baumes anlegen
nodes[]

Knoten anlegen
nodes[0] = Node("Es")
nodes[1] = Node("war")
nodes[2] = Node("kam")

Knoten verbinden
nodes[0].left = nodes[1]
nodes[1].right = nodes[2]

Gewichte der Kanten setzen
nodes[0].leftweight = 8
nodes[0].rightweight = 5

Ein kleines Sprachmodell

Hier sehr ihr ein Beispiel für ein „Sprachmodell“, welches Märchenanfänge generiert und von all dem
Gebrauch macht, was wir bisher über Binärbäume besprochen haben. Alle wesentlichen Aktionen, die
in großen Sprachmodellen stattfinden, lassen sich hier erleben, z.B. dass immer Interaktion mit
Menschen notwendig sind, um ein Sprachmodell zu optimieren.

littlelanguangemodell.py

import random

class Node:

 # Konstruktor, nur data muss einen Wert haben
 def __init__(self, data) -> None:
 self.left = None
 self.right = None
 self.leftweight = 0
 self.rightweight = 0
 self.data = data

 # zufällig durch den Binärbaum gehen
 # Daten des jeweiligen Knotens ausgeben
 # Aktuellen Weg in einer Liste merken (false = links, true = right)

 def walkRandom(self):
 print(self.data)

https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:python:binaerbaeume&codeblock=2

2026/02/07 22:32 5/7 Binärbäume

Unterrichtswiki - https://schule.riecken.de/

 select = random.uniform(0,100)
 if select > 50:
 nextNode = self.left
 direction = False
 else:
 nextNode = self.right
 direction = True
 if nextNode:
 way.append(direction)
 nextNode.walkRandom()
 else:
 return

 # Anhand der Gewichte der Kanten durch den Baum gehen
 # Bei gleichem Gewicht zufälligen Knoten wählen

 def walkWeighted(self):
 print(self.data)
 if self.leftweight > self.rightweight:
 nextNode = self.left
 elif self.leftweight < self.rightweight:
 nextNode = self.right
 elif self.leftweight == self.rightweight:
 select = random.uniform(0,100)
 if select > 50:
 nextNode = self.left
 else:
 nextNode = self.right
 if nextNode:
 nextNode.walkWeighted()
 return

 # Anhand des Weges (way) durch den Baum gehen
 # Gewichte der Kanten entsprechend setzen

 def setWeight(self, currentdepth):
 if currentdepth >= len(way):
 return
 if way[currentdepth]:
 self.rightweight += 1
 nextNode = self.right
 else:
 self.leftweight += 1
 nextNode = self.left
 if nextNode:
 nextNode.setWeight(currentdepth+1)
 else:
 return

Mega unschöne Methode, um die Gewichte im Baum formatiert anzuzeigen

Last
update:
2024/07/20
14:35

informatik:algorithmisch:python:binaerbaeume https://schule.riecken.de/doku.php?id=informatik:algorithmisch:python:binaerbaeume&rev=1721486137

https://schule.riecken.de/ Printed on 2026/02/07 22:32

def displayWeight():
 print(" ", nodes[0].leftweight, nodes[0].rightweight)
 print(" ",nodes[1].leftweight, nodes[1].rightweight,
nodes[2].leftweight, nodes[2].rightweight)
 print(" ", nodes[3].leftweight, nodes[3].rightweight,
nodes[4].leftweight, nodes[4].rightweight, nodes[5].leftweight,
nodes[5].rightweight, nodes[6].leftweight, nodes[6].rightweight)
 print(nodes[7].leftweight, nodes[7].rightweight,
nodes[8].leftweight, nodes[8].rightweight, nodes[9].leftweight,
nodes[9].rightweight, nodes[10].leftweight,
nodes[10].rightweight,nodes[11].leftweight, nodes[11].rightweight,
nodes[12].leftweight, nodes[12].rightweight, nodes[13].leftweight,
nodes[13].rightweight, nodes[14].leftweight, nodes[14].rightweight)
 print()
 return

data enthält die Daten der Knoten in Reihenfolge der Baumlevel
0,1,1,2,2,2,2 ...
data = ["Es","war einmal", "begab sich zu der Zeit", "ein Müller", "ein
Königssohn", "als Wesen der Erde innewohnten", "der Fantasiewesen",
"der", "welcher", "der", "welcher", "die", "welche", "die", "welche",
"in die Welt zog", "ausging", "in die Welt zog", "ausging", "in die
Welt zog", "ausging", "in die Welt zog", "ausging", "der Fantasie der
Kinder", "der Fantasie der Kinder", "der Fantasie der Kinder", "der
Fantasie der Kinder", "der Fantasie der Kinder", "der Fantasie der
Kinder", "der Fantasie der Kinder", "der Fantasie der Kinder"]

nodes ist eine Liste der Knoten
nodes = []

z ist eine Hilfsvariable zum Aufbau des Binärbaumes
z = 1

Binärbaum bauen
for i in range(0,len(data)):
 nodes.append(Node(data[i]))

for i in range(0,14):
 nodes[i].left = nodes[i+z]
 nodes[i].right = nodes[i+z+1]
 z+=1

Mainmethode
while True:
 print()
 choice = int(input("Was willst du tun?\n1: Training\n2: Stand
abrufen\n3: Ende\n\nDeine Wahl: "))
 print()
 if choice == 1:
 print()

2026/02/07 22:32 7/7 Binärbäume

Unterrichtswiki - https://schule.riecken.de/

 way = []
 nodes[0].walkRandom()
 print()
 innerchoice = int(input("1: Dieser Anfang ist ok\n2: Dieser
Anfang ist nicht ok\n\nDeine Eingabe: "))
 if innerchoice == 1:
 nodes[0].setWeight(0)
 elif choice == 2:
 displayWeight()
 nodes[0].walkWeighted()
 elif choice == 3:
 break
 else:
 print("Ungültige Eingabe!")
 print()

print("Programmende!")

From:
https://schule.riecken.de/ - Unterrichtswiki

Permanent link:
https://schule.riecken.de/doku.php?id=informatik:algorithmisch:python:binaerbaeume&rev=1721486137

Last update: 2024/07/20 14:35

https://schule.riecken.de/
https://schule.riecken.de/doku.php?id=informatik:algorithmisch:python:binaerbaeume&rev=1721486137

	[Binärbäume]
	Binärbäume
	Grundbegriffe
	Spezialfall Binärbäume
	Kanten und Gewicht
	Ein kleines Sprachmodell

