
2026/02/09 08:24 1/9 Aufgabe zur Objektorientierung in Python

Unterrichtswiki - https://schule.riecken.de/

Aufgabe zur Objektorientierung in Python

Aufgabe 1

Erstelle eine Klasse „Bankkonten“. Überlege dir sinnvolle Attribute und Methoden, die man für ein
Bankkonto braucht. Das dauert. Wirklich. Man muss sich in den Schmonz ziemlich reindenken und viel
probieren!

Das Ziel für heute: Du kannst Geldbeträge zwischen unterschiedlichen Konten verschieben (dort
abbuchen, da aufbuchen). Das lässt sich mit dem Wissen, was du hast, elegant und weniger elegant
lösen.

Die harte Variante: Du kannst einer Methode eines Objekts auch ein anderes Objekt übergeben (das
ist aber schon die ganz harte Variante für den Anfang, an dem du stehst).

Klicke hier für einen Lösungsansatz

account.py

Thx an Aaron für große Teile des Codes!

class konto:
 # Konstruktor, der uns das neue Konto baut
 def __init__(self, nummer, kontostand):
 self.nummer = nummer
 self.kontostand = kontostand

 # Methode zum Überweisen
 # Erwartet: value (Summe, die übertragen werden soll)
 # Erwartet: target (Zielkonto)
 # Auf den eigenen Kontostand können wir mit self.kontostand
zugreifen
 # Auf den Zielkontostand können wir mit target.kontostand zugreifen
 # target haben wir im Hauptprogramm übergeben

 def ueberweisen(self, value, target):
 self.kontostand = self.kontostand - value
 target.kontostand = target.kontostand + value

konto1 = konto(1, 1000)
konto2 = konto(2, 2000)

print("Alter Kontostand:", konto1.kontostand)
print("Alter Kontostand:", konto2.kontostand)

Wir greifen auf die Methode "überweisen" innerhalb der Klasse konto
zu.
Vor dem Punkt steht das Objekt, das wir verändern wollen

https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=0

Last
update:
2024/07/16
13:21

informatik:algorithmisch:aufgabe:pythonobjects https://schule.riecken.de/doku.php?id=informatik:algorithmisch:aufgabe:pythonobjects&rev=1721136060

https://schule.riecken.de/ Printed on 2026/02/09 08:24

konto1.ueberweisen(100, konto2)

print("Neuer Kontostand:", konto1.kontostand)
print("Neuer Kontostand:", konto2.kontostand)

Aufgabe 2

Bankkonten sind eine komplexe Sache. Erwachsene dürfen z.B. im Rahmen eines Dispositionskredits
ihr Konto um einen bestimmten Betrag „überziehen“. Spezielle Jugendkonten bieten den kompletten
Funktionsumfang, verbieten aber jedwede Überziehung.

Überlege dir, wie du Dispositionskredite und Jugendkonten in deiner Kontoklasse realisieren kannst.
Die Dispositionskredite sollen sich durch eine Methode frei wählen lassen, jedoch nie über 50% des
aktuellen Kontostandes, d.h. das Konto muss beim Einrichten im Plus sein.

Wenn ein Jugendlicher jedoch versucht, sich einen solchen Kredit einzuräumen, soll diese Aktion
scheitern. Jugendliche sollen ihr Konto zudem nicht überziehen können.

Klicke hier für einen Lösungsansatz

jugend.py

class konto:
 # Konstruktor, der uns das neue Konto baut
 def __init__(self, nummer, kontostand, isAdult, dispo):
 self.nummer = nummer
 self.kontostand = kontostand
 self.isAdult = isAdult
 self.dispo = dispo

 def ueberweisen(self, value, target):
 self.kontostand = self.kontostand - value
 target.kontostand = target.konto

 def setDispo(self,value):
 if self.isAdult == 0:
 print("Du bist zu jung!")
 return
 if value > self.kontostand/2:
 print("Zu wenig Guthaben!")
 return
 else:
 self.dispo = value
 print("Dispo eingerichtet!")

kundenkonto[0] hat die Nummer 1 und 1000 Euro Guthaben
kundenkonto[1] hat die Nummer 2 und 2000 Euro Guthaben

https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=1

2026/02/09 08:24 3/9 Aufgabe zur Objektorientierung in Python

Unterrichtswiki - https://schule.riecken.de/

kundenkonten = [konto(1,1000,0,0), konto(2,2000,1,0)]

Geht schief, weil Jugendkonto
kundenkonten[0].setDispo(500)

Geht schief, weil Deckung nicht ausreicht
kundenkonten[1].setDispo(2000)

klappt
kundenkonten[1].setDispo(500)

Aufgabe 3

Auch die Bank braucht hin und wieder Informationen über ihre Kunden. So sollen Mitarbeitende z.B.
einfach herausfinden können, wie viele Jugendkonten und Erwachsenenkonten es gerade gibt.

Das kannst du z.B. alles über eine Methode im Hauptprogramm realisieren.

Wenn du das elegant mit einer Schleife machen möchtest, musst du ja durch alle Konten laufen. Um
die Konten in einer Schleife durchzählen zu können, wäre es ja hübsch, sie über einen Index
ansprechen zu können, z.B. kundenkonto[0].getDispo() oder kundenkonto[0].isAdult.

Du kannst dir dazu ein Array von Objekten anlegen. Die Elemente sind durch ein Komma getrennt. In
runden Klammern stehen hinter jedem Element die Basiswerte. Das wirst du ggf. an deine Klasse
anpassen müssen. Die Umsetzung ist recht einfach:

array_of_objects.py

class konto:
 # Konstruktor, der uns das neue Konto baut
 def __init__(self, nummer, kontostand):
 self.nummer = nummer
 self.kontostand = kontostand

kundenkonto[0] hat die Nummer 1 und 1000 Euro Guthaben
kundenkonto[1] hat die Nummer 2 und 2000 Euro Guthaben

kundenkonten = [konto(1,1000), konto(2,2000)]
print(kundenkonto[1].kontostand)

Zur Erinnerung

len(array) gibt die die Anzahl der Elemente in einem Array zurück.

https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=2

Last
update:
2024/07/16
13:21

informatik:algorithmisch:aufgabe:pythonobjects https://schule.riecken.de/doku.php?id=informatik:algorithmisch:aufgabe:pythonobjects&rev=1721136060

https://schule.riecken.de/ Printed on 2026/02/09 08:24

Klicke hier für einen Lösungsansatz

account_count.py

class konto:
 # Konstruktor, der uns das neue Konto baut
 def __init__(self, nummer, kontostand, isAdult, dispo):
 self.nummer = nummer
 self.kontostand = kontostand
 self.isAdult = isAdult
 self.dispo = dispo

 def ueberweisen(self, value, target):
 self.kontostand = self.kontostand - value
 target.kontostand = target.konto

 def setDispo(self,value):
 if self.isAdult == 0:
 print("Du bist zu jung!")
 return
 if value > self.kontostand/2:
 print("Zu wenig Guthaben!")
 return
 else:
 self.dispo = value
 print("Dispo eingerichtet!")

kundenkonto[0] hat die Nummer 1 und 1000 Euro Guthaben
kundenkonto[1] hat die Nummer 2 und 2000 Euro Guthaben

kundenkonten = [konto(1,1000,0,0), konto(2,2000,1,0)]

Zählvariablen
youth_count = 0
adult_count = 0

for i in range(0,len(kundenkonten)):

 if (kundenkonten[i].isAdult == 1):
 adult_count += 1
 else:
 youth_count += 1

print(f'Es gibt {youth_count} Jugendkonten und {adult_count}
Erwachsenenkonten.')

https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=3

2026/02/09 08:24 5/9 Aufgabe zur Objektorientierung in Python

Unterrichtswiki - https://schule.riecken.de/

Aufgabe 4

Der Bankvorstand hat sich gemeldet. Die Summe aller positiven Kontostände soll angezeigt werden
können sowie die Höhe aller gerade laufenden Dispositionskredite. Außerdem soll berechnet werden
können, ob die Bank selbst im Plus oder im Minus ist.

Klicke hier für einen Lösungsansatz

sum_accounts.py

class konto:
 # Konstruktor, der uns das neue Konto baut
 def __init__(self, nummer, kontostand, isAdult, dispo):
 self.nummer = nummer
 self.kontostand = kontostand
 self.isAdult = isAdult
 self.dispo = dispo

 def ueberweisen(self, value, target):
 self.kontostand = self.kontostand - value
 target.kontostand = target.konto

 def setDispo(self,value):
 if self.isAdult == 0:
 print("Du bist zu jung!")
 return
 if value > self.kontostand/2:
 print("Zu wenig Guthaben!")
 return
 else:
 self.dispo = value
 print("Dispo eingerichtet!")

kundenkonto[0] hat die Nummer 1 und 1000 Euro Guthaben
kundenkonto[1] hat die Nummer 2 und 2000 Euro Guthaben

kundenkonten = [konto(1,1000,0,0), konto(2,2000,1,1000)]

Variablen zum Aufsummieren
sum_credit = 0
sum_dispo = 0

for i in range(0,len(kundenkonten)):
 sum_credit += kundenkonten[i].kontostand
 sum_dispo += kundenkonten[i].dispo

print(f'Die Guthabenhöhe aller Konten beträgt {sum_credit} Euro und die
Höhe der Dispokredite beträgt {sum_dispo} Euro. Der Guthabenstand der
Bank beträgt insgesamt {sum_credit} Euro.')

https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=4

Last
update:
2024/07/16
13:21

informatik:algorithmisch:aufgabe:pythonobjects https://schule.riecken.de/doku.php?id=informatik:algorithmisch:aufgabe:pythonobjects&rev=1721136060

https://schule.riecken.de/ Printed on 2026/02/09 08:24

Aufgabe 5

Bei jeder Überweisung soll nun eine Gebühr von 1,5% des Überweisungsbetrages erhoben werden -
außer bei Jugendkonten.

Klicke hier für einen Lösungsansatz

Bei Erwachsenenkonten ziehen wir bei jeder Überweisung 101,5% vom Konto ab, bei Jugendkonten
nicht. Problem: Momentan verschwindet die Gebühr einfach im Nirgendwo. Hast du Ideen?

account_fee.py

def ueberweisen(self, value, target):
 if (self.isAdult == 1):
 self.kontostand = self.kontostand - value * 1.015
 else:
 self.kontostand = self.kontostand
 target.kontostand = target.konto

Aufgabe 6

Es gibt ein ernstes Problem mit der Methode zur Überweisung. Wenn der Kunde negative
Überweisungsbeträge eingibt, bekommt er Geld vom anderen Konto. Das soll unterbunden werden.

Klicke hier für einen Lösungsansatz

handling_negative.py

def ueberweisen(self, value, target):
 if (value < 0):
 print("Nicht autorisierte Anforderung!")
 return
 if (self.isAdult == 1):
 self.kontostand = self.kontostand - value * 1.015
 else:
 self.kontostand = self.kontostand - value
 target.kontostand = target.konto + value

Aufgabe 7

Die Schulbücherei braucht deine Hilfe. Sie möchte weg von den ganzen Zettelkästen im Verleih. Die
Schüler:innen sollen Bücher nach Kriterien suchen können. Sie dürfen zudem bis zu drei Bücher

https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=5
https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=6

2026/02/09 08:24 7/9 Aufgabe zur Objektorientierung in Python

Unterrichtswiki - https://schule.riecken.de/

ausleihen, wenn diese Bücher nicht schon verliehen sind. Überlege dir eine geeignete Klasse „Buch“
und eine geeignete Klasse „Schüler“. Welche Attribute und Methoden brauchen diese Klassen
mindestens? Teste deine Klassen mit Beispielsuchen und Beispielausleihvorgängen.

Du erledigst diese Aufgabe mit einem Partner / einer Partnerin.
Die ausgeliehenen Bücher sollen innerhalb einer Person gespeichert werden. Wenn eine Person
ausgewählt wird, sollen die von ihr entliehenen Bücher angezeigt werden.
Verzettelt euch nicht! Realisiert nur die Attribute und Methoden, die ihr unbedingt braucht, um
Basisfunktionen bereitzustellen
Überlegt bitte einmal, wie ihr Aufgaben im Team verteilen könnt: Es müssen zwei Klassen
geschrieben werden, es müssen Objekte zum Testen erzeugt werden, Methoden müssen
getestet werden etc..

Hinweise

Da nur drei Bücher entliehen werden sollen, kann man es sich einfach machen
und einfach drei Attribute für Bücher in der Klasse „Person“ hinterlegen. Jedes
Atrribut zeigt dann auf ein Buchobjekt - oder eben nicht, wenn keins entliehen ist.
Schicker ist es, die Buchobjekte in einem Array von Objekten zu speichern. Damit
ist man später flexibler bei der Anzahl der entleihbaren Bücher und braucht auch
im Prinzip weniger Speicherplatz.

Ein Element anhängen:

append.py

array = [0,1,2,3]
array.append(4)
for x in array:
 print (x)

Mehrere Elemente anhängen:

append_several.py

array = [0,1,2,3]
array.extend([4,5,6,7])
for x in array:
 print (x)

Ein Element löschen:

remove.py

array = [0,1,2,3]
array.remove(2)
for x in array:

https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=7
https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=8
https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=9

Last
update:
2024/07/16
13:21

informatik:algorithmisch:aufgabe:pythonobjects https://schule.riecken.de/doku.php?id=informatik:algorithmisch:aufgabe:pythonobjects&rev=1721136060

https://schule.riecken.de/ Printed on 2026/02/09 08:24

 print (x)

Denke daran, dass du bei einem Array von Objekten nicht mit Werten
herumschiebst, sondern mit Objekten, z.B. person[0], book[8].

remove.py

Wir nehmen an, dass die Klasse für Personen "person"
heißt und N Attribute hat
array = [person(Attribut1, Attribut2,...,AttributN),
person(Attribut1, Attribut2,...,AttributN),
person(Attribut1, Attribut2,...,AttributN), ...]

Entfernt person[0] aus dem Array
array.remove(person[0])

Klicke hier für einen Lösungsansatz

library.py

class book:
 def __init__(self, id, title, author, isAvailable):
 self.id = id
 self.title = title
 self.author = author
 self.isAvailable = isAvailable

 def rent():
 self.isAvailable = False

 def release():
 self.isAvailable = True

class user:
 def __init__(self, id, name, surename, hasBooks):
 self.id = id
 self.name = name
 self.surename = surename
 self.hasBooks = hasBooks

Some Testing
book_test = book(1, "Harry Potter - Stein der Weisen", "Joanne K.
Rowling", False)
print(book_test.title)

https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=10
https://schule.riecken.de/doku.php?do=export_code&id=informatik:algorithmisch:aufgabe:pythonobjects&codeblock=11

2026/02/09 08:24 9/9 Aufgabe zur Objektorientierung in Python

Unterrichtswiki - https://schule.riecken.de/

user_testHasBooks = []
user_test = user(1, "Maik", "Riecken", user_testHasBooks)
print(user_test.surename)

From:
https://schule.riecken.de/ - Unterrichtswiki

Permanent link:
https://schule.riecken.de/doku.php?id=informatik:algorithmisch:aufgabe:pythonobjects&rev=1721136060

Last update: 2024/07/16 13:21

https://schule.riecken.de/
https://schule.riecken.de/doku.php?id=informatik:algorithmisch:aufgabe:pythonobjects&rev=1721136060

	[Aufgabe zur Objektorientierung in Python]
	Aufgabe zur Objektorientierung in Python
	Aufgabe 1
	Aufgabe 2
	Aufgabe 3
	Zur Erinnerung

	Aufgabe 4
	Aufgabe 5
	Aufgabe 6
	Aufgabe 7
	Hinweise

