Die elektrochemische Spannungsreihe

Wenn man Halbzellen verschiedener Elemente oder Redoxsysteme unter Standardbedingungen aufbaut und gegen die Normal-Wasserstoffhalbzelle misst, so erhält man das jeweilige Standard-Potential E^0 .

Sortiert man die Redoxsysteme entsprechend ihres Standardpotentials, entsteht die **elektrochemische Spannungsreihe**.

Element im Redoxpaar, dessen Oxidationsstufe sich ändert	oxidierte Form + z e	Standardpotential E ^o
Fluor	F ₂ + 2e ⁻ ⇒ 2F ⁻	+2,89V
Mangan(VII)	$MnO_4 + 4H_3O^+ + 3e \rightleftharpoons MnO_2 + 8H_2O$	+1,679V
Chlor	Cl ₂ + 2e ⁻ ≠ 2Cl ⁻	+1,396V
Chrom(VI)	$Cr_2O_7^{2-} + 14H_3O^+ + 6e^- \rightleftharpoons 2Cr^{3+} + 21H_2O$	+1,36V
Brom	Br ₂ + 2e ⁻ ⇌ 2Br ⁻	+1,098V
Silber	$Ag^+ + e^- \rightleftharpoons Ag$	+0,799V
lod	l ₂ + 2e ⁻ ≠ 2l ⁻	+0,535V
Kupfer(I)	Cu ⁺ + e ⁻ ⇌ Cu	+0,518V
Kupfer(II)	Cu ²⁺ + 2e ⁻ ⇌ Cu	+0,339V
Wasserstoff	$2H_3O^+ + 2e^- \rightleftharpoons 2H_2O + H_2$	0V
Eisen(III)	Fe³+ + 3e⁻ ⇌ Fe	-0,037V
Blei	Pb ²⁺ + 2e ⁻ ⇒ Pb	-0,126V
Zinn	Sn ²⁺ + 2e ⁻ ⇌ Sn	-0,141V
Chrom	Cr³+ + 3e⁻ ⇌ Cr	-0,89V
Zink	Zn ²⁺ + 2e ⁻ ⇌ Zn	-0,762V
Aluminium	Al ³⁺ + 3e ⁻ ⇒ Al	-1,677V
Natrium	Na ⁺ + e ⁻ ⇌ Na	-2,714V
Calcium	Ca ²⁺ + 2e ⁻ ⇌ Ca	-2,868V
Lithium	Li ⁺ + e ⁻ ⇌ Li	-3,040V

Anwendungen und Gesetzmäßigkeiten

- 1. Je weiter oben ein Redoxsystem in der Spannungsreihe steht, desto höher sein Vermögen, Elektronen aufzunehmen, bzw. anderen Reaktionspartnern Elektronen zu entziehen.
- 2. Je weiter unten ein Redoxsystem in der Spannungsreihe steht, desto höher sein Vermögen, Elektronen abzugeben, bzw. Elektronen auf andere Reaktionspartner zu übertragen.
- 3. Systeme mit hohem Standardpotential sind starke Oxidationsmittel.

Last update: 2025/08/14 11:10

- 4. Systeme mit niederigem Standardpotential sind starke Reduktionsmittel
- 5. Mit dem Standardpotential lassen sich Vorhersagen über den Ablauf von chemischen Reaktionen machen; Das System mit niedrigerem Potential gibt Elektronen an das mit dem höheren ab,
- 6. Das System mit dem niederigerem Standardpotential bildet die Donatorhalbzelle, das mit dem höheren die Akzeptorhalbzelle.

From:

https://schule.riecken.de/ - Unterrichtswiki

Permanent link:

https://schule.riecken.de/doku.php?id=chemie:redox:oxidationseries

https://schule.riecken.de/ Printed on 2025/10/21 04:26