Intermolekulare Wechselwirkungen

- Je größer die Molekülmasse, desto mehr kinetische Energie ist erforderlich, um ein Molekül aus dem Flüssigkeitsverband in die Gasphase zu überführen und desto höher wird der Siedepunkt der Verbindung liegen.
- 2. Je größer die intermolekularen Wechselwirkungen, desto schwieriger ist es, die Moleküle voneinander zu trennen. Diese Trennung ist jedoch erforderlich für den Übergang in die Gasphase. Daher sind bei großen intermolekularen Wechselwirkungen höhere Temperaturen zur deren Überwindung erforderlich.
- 3. Die Van-der-Waals-Kraft ist die schwächste intermolekulare Kraft. Sie ist direkt abhängig von der Kontaktfläche, mit der sich zwei Moleküle berühren können. Die Van-der-Waals-Kraft steigt mit der Länge der Kette und sinkt mit einem wachsenden Verzweigungsgrad des Moleküls.
- 4. Elektrostatische Wechselwirkungen (polare Anziehungskräfte) können nur bei Molekülen wirken, die über eine oder mehrere polare Atombindungen verfügen. Dabei bilden sich Partialladungen aus. Entgegengerichtete Partialladungen bedingen eine elektrostatische Anziehungskraft. Die Kraft der elektrostatischen Anziehungskräfte überwiegt gerade bei kleinen Molekülen mit wenig Kontaktfläche in ihrer Stärke oft die Van-der-Waals-Kraft, weil sie eben dauerhaft (= statisch) auftreten und nicht wie die Van-der-Waals-Kräfte temporär induziert und damit von statistischen Gegebenheiten abhängig sind. Bei großen Moleküle kann der Betrag der Van-Der-Waals-Kraft jedoch beträchtliche Größenordnungen aufweisen.
- 5. Wasserstoffbrückenbindungen sind sehr starke intermolekulare Wechselwirkungen und in ihrer Stärke den Van-der-Waals- und elektrostatischen Kräften übergeordnet Für ihre Ausbildung muss Wasserstoff polar gebunden und mindestens ein freies Elektronenpaar vorhanden sein.

From:

https://schule.riecken.de/ - Unterrichtswiki

Permanent link:

https://schule.riecken.de/doku.php?id=chemie:organic:characteristics&rev=1755435792

Last update: 2025/08/17 13:03

