2025/10/19 02:53 1/3 Die Wärmekapazität

Die Wärmekapazität

Einstieg

Ein Fitnessinfluencer bewirbt in seinen Videos, dass das Trinken von drei Litern kaltem Wasser (12°C) bereits einen nennenswerten Beitrag zum Kalorienverbrauch leistet.

Die Durchschnittskörpertemperatur eines Menschen beträgt etwa 36-37°C und ist auch immer davon abhängig, wo genau gemessen wird. Der Einfachheit halber nehmen wir einen Wert von 36,5°C an. Auf diesen Wert wird das Wasser durch den Körper erwärmt, bevor es ihn wieder verlässt.

Welche Energiemenge in Form von Wärmeenergie ist dazu notwendig?

Lösung

Ansatz

Gegeben:

- Wärmekapazität von Wasser bei 20°C/1013hPa c: 4,1819KJ/Kg*K
- Temperaturdifferenz ΔT: 36,5°C-12°C = 24,5°C entspricht einer Differenz von 24,5K
- Masse m des Wassers: 3kg
- Umrechnung von KJ in kcal: 1kcal entspricht 4,186KJ
- Die Änderung der inneren Energie -ΔU entspricht der zugeführten Wärmemenge Q.

Allgemein gilt:

$$Q = c \cdot m \cdot \Delta T$$

Einsetzen:

$$-\Delta U = Q = 4,1819KJ/(kg*K) * 3kg * 24,5K \approx 307,4KJ \approx 73,4kcal$$

Ergebnis

Bei Erwärmen von 1L Wasser (12°C) um 24,5K wird etwa eine Energiemenge von **307,4KJ** oder **73,4kcal** verbraucht (100g Schokolade haben etwa 540kcal).

Aufgaben rund um Wärmekapazität

Wärmekapazität bei 20°C?

Wir haben oben mit der Wärmekapazität für 20°C gerechnet. Die Wärmekapazität hängt aber von der Temperatur ab. Hier findest du einige Werte (Quelle):

Temperatur [°C]	Wärmekapazität [KJ/(kg*K)]
12	4,1893
13	4,1880
14	4,1869
15	4,1858
16	4,1849
17	4,1840
18	4,1832
19	4,1825
20	4,1819
21	4,1813
22	4,1808
23	4,1804
24	4,1800
25	4,1796
26	4,1793
27	4,1790
28	4,1788
29	4,1786
30	4,1785
31	4,1784
32	4,1783
33	4,1783
34	4,1782
35	4,1782
36	4,1783
37	4,1783

- 1. Was musst du tun, um mit den genauen Werten zu rechnen?
- 2. Wie können wir uns im Kurs die Arbeit sinnvoll teilen?
- 3. Wie groß ist der Fehler, den wir dadurch machen, dass wie die Wärmekapazität des Wasser bei 20°C annehmen?

Energiebedarf in der Schwangerschaft

Die Menge des Fruchtwassers beträgt zur Mitte der Schwangerschaft etwa 1L, das Gewicht des Fötus (der zu 90% aus Wasser besteht) etwa 2Kg. Welche Energiemenge muss ersetzt werden, wenn sich die Fruchtblase mit dem Fötus von 37°C auf 36°C abkühlt und wir die Trockenmasse des Fötus dabei nicht berücksichtigen?

https://schule.riecken.de/ Printed on 2025/10/19 02:53

2025/10/19 02:53 3/3 Die Wärmekapazität

From:

https://schule.riecken.de/ - Unterrichtswiki

Permanent link:

https://schule.riecken.de/doku.php?id=chemie:lesson:klasse12:warmthcapacityexercise

Last update: 2024/09/02 05:53

