Musterlösung zur Klausur Nr. 1

Aufgabe 1

Aufgabe 2a

Es soll eine Temperaturerhöhung ΔT von 75K für 400g Kaffee (= 0,4kg) erreicht werden. Bekannt ist die auf ein Mol bezogene Wärmemenge, die bei der Reaktion von festem Calciumoxid frei wird: $\Delta_R H = -65 \text{k}\text{J/mol}$.

gegeben:

 $\Delta T = 75K$ m(Kaffee) = 400g = 0,4kg $c_{Wasser} = 4,19 \text{ kJ} \cdot \text{kg}^{-1} \cdot \text{K}^{-1}$ $\Delta_R H = -65 \text{kJ/mol M(CaO)} = \text{M(Ca)} + \text{M(O)} = 56g$

allgemein gilt:

(1)
$$Q = c_0 \cdot m \cdot \Delta T$$

Ansatz:

Berechnung von ΔT für 0,4kg Kaffee und einem Mol Calciumoxid, d.h. zunächst Umstellung von (1) nach ΔT .

(2)
$$\Delta T = \Delta_R H \cdot c_{wasser}^{-1} \cdot m^{-1}$$

Danach ist für die gegebene Kaffeemasse bekannt, welches ΔT ein Einsatz von einem Mol Calciumoxid bewirkt. Bei einer Differenz Δ ist das Vorzeichen irrelevant, daher kann mit dem Betrag gerechnet werden.

Das muss lediglich hochgerechnet werden auf $\Delta T = 75K$. Dabei handelt es sich um einen einfachen Dreisatz.

Man erhält dann eine Stoffmenge an Calciumoxid, die man über die bekannte molare Masse M in eine Masse umrechnen kann.

Rechnung:

 $\Delta T = |-65k] / (4,19k] \cdot kg^{-1} \cdot K^{-1} \cdot 0,4kg)^{-1} \approx 38,8K$

Mit einem Mol Calciumoxid lassen sich also 0,4kg Kaffee um 38,8K erwärmen.

1 mol/38,8K = x mol / 75K

 $x = 75K \cdot 1 \text{mol}/38,8K \approx 1,94 \text{mol}$

Man benötigt also 1,94mol Calciumoxid für eine Erwärmung von 75K.

$1,94 \text{mol} \cdot 56 \text{g/mol} \approx 108,6 \text{g}$

Es wird eine Masse von 108,6g Calciumoxid benötigt, um eine Erwärmung von 0,4kg Kaffee um 75K zu erreichen.

Aufgabe 2b

Man setzt 108,6g Calciumoxid und 0,4kg zusätzliches Wasser für die Erwärmung ein. Diese Stoffe müssen genau wie die Dose selbst durch die Reaktion mit erwärmt werden. Zusätzlich ist in der Realität nicht von einem geschlossenem System auszugehen, sodass Wärmeverluste auftreten.

From:

https://schule.riecken.de/ - Unterrichtswiki

Permanent link:

https://schule.riecken.de/doku.php?id=chemie:lesson:klasse12:kl01muster&rev=1726737726

Last update: 2024/09/19 09:22

https://schule.riecken.de/ Printed on 2025/12/13 04:17