Reaktionsenthalpien berechnen

Einleitung

Mit einem Kalorimeter kann man einige Reaktionsenthalpien experimentell bestimmen. Bei einigen Verbindungen ist das auf diesem Weg so nicht möglich. Man kann aber ausnutzen, dass Änderung der inneren Energie \$\Delta U\$ unabhängig vom Reaktionsweg ist.

Die Standardbildungsenthalpie

Die molare Standardbildungsenthalpie \$\Delta_{f}H_{m}\$ (f für "formation" / "Bildung") beschreibt die Standardreaktionsenthalpie \$\Delta_{r}H_{m}\$ für die Bildung eines Stoffes aus den Elementen. Wichtig ist hierbei immer auch der Aggregatzustand, da sich die innere Energie U zwischen unterschiedlichen Zuständen unterscheiden kann.

Stoff	<pre>\$\Delta_{f}H_{m}^{0}\space \space [\frac{kJ}{mol}]\$</pre>	Stoff	<pre>\$\Delta_{f}H_{m}^{0}\space \space [\frac{kJ}{mol}]\$</pre>
AgCl(s)	-126,8	H₂O(g)	-241,8
AgBr(s)	-100,4	H ₂ O(I)	-285,9
AgNO ₃ (s)	-120,5	H ₂ S(g)	-20,5
Al ₂ O ₃ (s)	-1675,3	H ₂ SO ₄ (I)	-814
Br ₂ (g)	111,8	HNO₃(g)	294,1
CO(g)	-110,5	MgO(s)	-601,4
CO ₂ (g)	-393,5	MnO	-384,9
CH₄(g)	-74,8	NH₃(g)	-46
C ₂ H ₂ (g)	226,7	NO ₂ (g)	33,2
C ₂ H ₄ (g)	52,5	NaCl(s)	-411,1
C ₂ H ₆ (g)	-84,7	NaOH(s)	-428
C₃H ₈ (g)	-103,9	Na ₂ CO ₃ (s)	-1131
CH₃OH(I)	-238,7	Na ₂ SO ₄ (s)	-1387,8
CaO(s)	-634,3	PbO ₂ (s)	-274,5
CaCl ₂ (s)	-796	PbSO ₄ (s)	-920,1
Ca(OH) ₂ (s)	-986,2	SO ₂ (g)	-296,8
CaCO ₃ (s)	-1206,7	ZnO(s)	-348,1
CuO(s)	-155,9	ZnS(s)	-201,7
CuS(s)	-48,5	ZnSO ₄ (s)	-981,4
CuSO ₄ (s)	-770	Cl ⁻ (aq)	121
FeO(s)	-272	Cu ²⁺ (aq)	65
Fe ₂ O ₃ (s)	-825,5	Na ⁺ (aq)	-240
HF(g)	-272,5	NH ₄ Cl(s)	-314
HCl(g)	-92,3	OH ⁻ (aq)	-230
HBr(g)	-36,4	Zn ²⁺ (aq)	-153
HJ(g)	26,4	O ₃	143

Der Satz von Hess

From:

https://schule.riecken.de/ - Unterrichtswiki

Permanent link:

https://schule.riecken.de/doku.php?id=chemie:energetik:reaktionsenthalpie&rev=1761163672

Last update: 2025/10/22 20:07

https://schule.riecken.de/ Printed on 2025/10/23 21:45