Die Säurestärke

Die Säurekonstante

Herleitung

Formuliert man den Ausdruck K für eine Protolysegleichung einer beliebigen Säure und zieht die Konzentration des Wasser mit in die Konstante K, erhält man die Säurekonstante K_s :

$$egin{aligned} H_2O_{(l)} + HA_{(aq)} &\rightleftharpoons H_3O_{(aq)}^+ + A_{(aq)}^- \ &K = rac{c(H_3O^+) \cdot c(A^-)}{c(HA) \cdot c(H_2O)} \quad \Big| \cdot c(H_2O) \ &\Leftrightarrow K \cdot c(H_2O) = rac{c(H_3O^+) \cdot c(A^-)}{c(HA)} \quad \Big| \quad K \cdot c(H_2O) = K_s \ &\Leftrightarrow K_s = rac{c(H_3O^+) \cdot c(A^-)}{c(HA)} \equiv rac{\prod c(umgesetzte \: S\"{a}urekomponenten)}{c(unver\"{a}nderte \: S\"{a}uremolek\"{u}le)} \end{aligned}$$

Bedeutung

 K_s gibt das Verhältnis der Konzentrationen von Säurekompenten (Hydroniumionen, Säurerestionen), die im Lösungsmittel mit Wasser vorliegen und der Konzentration der unveränderten Säuremoleküle an. Bei einer starken Säure, haben nahezu alle Säuremoleküle reagiert, bei einer schwachen nur Bruchteile.

Beispiel

Die Essigsäure ist eine recht schwache Säure. Ihr K_s -Wert beträgt etwa $10^{-4,75}$, dezimal also 0,000475. Es gibt also viel mehr Säuremoleküle, die unverändert vorliegen (großer Nenner) als umgesetzte Säurekomponenten (Zähler).

From:

https://schule.riecken.de/ - Unterrichtswiki

Permanent link:

https://schule.riecken.de/doku.php?id=chemie:acids:relative&rev=1753191245

Last update: 2025/07/22 13:34

