Der pKb-Wert

Die Basenkonstante K_B ist ein Maß für die Basenstärke, jedoch nicht besonders intuitiv. Zudem sind die Werte für K_B gerade bei schwachen und sehr schwachen Basen sehr klein, sodass man mit recht unhandlichen Zahlenwerten umgehen muss. Um das zu vereinfachen, wurde der pK_B -Wert eingeführt. Die Definition ist recht analog zu der des pH-Wertes.

A

Der pKb-Wert

Der pH-Wert ist der mit -1 multiplizierte Logarithmus zur Basis 10 der jeweiligen Basenkonstante K_B . Mathematisch ausgedrückt:

$$pK_B = -1 \cdot log(K_B)$$

Beispiel

Ammoniak (NH₃) besitzt einen K_B -Wert von $10^{-4,76}$, dezimal 0,000476.

$$pK_B = -1 \cdot log(K_B) = -1 \cdot log(10^{-4.76}) = 4.76$$

Beispiele für die Einteilung der Säurestärke

Bezeichnung	pK _s -Wert
sehr starke Säure	< -1,74
starke Säure	-1,74 bis 4,5
schwache Säure	4,5 bis 9,5
sehr schwache Säure	9,5-15,74
äußerst schwache Säure	> 17,74

Einteilung nach Wikipedia / Jander Jahr.

From:

https://schule.riecken.de/ - Unterrichtswiki

Permanent link:

https://schule.riecken.de/doku.php?id=chemie:acids:pkb&rev=175361027

Last update: 2025/07/27 09:57

