
2025/10/23 16:20 1/3 Der pH-Wert

Der pH-Wert

Um die Konzentration an Hydroniumionen in verschiedenen Lösungen miteinander vergleichen zu können, wurde der pH-Wert eingeführt. Durch eine sehr einfache Dezimalzahl lässt sich darstellen, wie sauer oder alkalisch eine Lösung ist. Sehr verbreitet sind pH-Skalen dieser oder vergleichbarer Art:

Die dargestellten Zahlen wirken erstmal rein qualitativ: Ein Lösung mit einem pH-Wert von 1 ist saurer als eine mit einem pH-Wert von 3. Dabei ist der pH-Wert eine quantitative Größe und wie folgt definiert:

Der pH-Wert

Der pH-Wert ist der mit -1 multiplizierte Logarithmus zur Basis 10 von der aktuellen Hydroniumionenkonzentration ($c(H_3O^+)$. Mathematisch ausgedrückt:

$$pH = -1 \cdot log[c(H_3O^+)]$$

Beispiel

Es liegt die Lösung einer einprotonigen Säure der Konzentration c=0,1 mol/L vor. Welchen pH-Wert hat diese Lösung?

Die Konzentration der Hydroniumionen ($c(H_3O^+)$ in dieser Lösung beträgt: $c(H_3O^+)=0,1$ mol/L.

$$pH = -1 \cdot log[c(H_3O^+)] = -1 \cdot log[0, 1mol/L] = 1$$

Der pH-Wert dieser Lösung beträgt 1. Der Logarithmus besitzt generell keine Dimension (Einheit).

Warum der Umstand mit dem Logarithmus zur Basis 10?

In der Chemie spielen sehr oft Konzentrationsangaben in glatten Zehnerpotenzen eine Rolle (0,1 / 0,01 / ...). Der Logarithmus zur Basis 10 lässt sich sehr einfach im Kopf berechnen.

	Konzentration [mol/L] (als Potenz von 10)	Logarithmus zur Basis 10	pH-Wert
1	10°	0	0
0,1	10-1	-1	1
0,01	10 ⁻²	-2	2
0,001	10-3	-3	3

Hat man die Konzentration der Säure bereits in 10er-Potenzschreibweise vorliegen, lässt sich der pH-Wert leicht ohne Taschenrechner ermitteln.

Der dekadische Logarithmus macht sehr kleine Zahlenwerte handhabbarer. Du findest das gleiche Prinzip beim pKs- und pKb-Wert wieder.

Vom pH-Wert zur Konzentration

Es gibt elektronische Messverfahren für den pH-Wert. Aus den gemessenen Werten lässt sich die Konzentration der Hydroniumionen in einer Lösung berechnen.

Vom pH-Wert zur Konzentration

Um die Konzentration der Hydroniumionen aus dem pH-Wert zu berechnen, muss man die Definitionsgleichung des pH-Werts nach $c(H_3O^+)$ umstellen:

$$egin{aligned} pH &= -1 \cdot log[c(H_3O^+)] & \left| \ 10^x \ (Umkehrfunktion)
ight. \ &\Leftrightarrow 10^{-pH} = c(H_3O^+) \ &\Leftrightarrow c(H_3O^+) = 10^{-pH} \end{aligned}$$

Beispiel

Es liegt die Lösung einer einprotonigen Säure mit dem pH-Wert 2 vor. Welche Konzentration hat diese Lösung?

https://schule.riecken.de/ Printed on 2025/10/23 16:20

2025/10/23 16:20 3/3 Der pH-Wert

$c(H_3O^+) = 10^{-pH} = 10^{-2} = 0,01 mol/L$

Die Konzentration dieser Lösung beträgt 0,01mol/L.

From:

https://schule.riecken.de/ - Unterrichtswiki

Permanent link:

https://schule.riecken.de/doku.php?id=chemie:acids:ph

Last update: 2025/08/04 14:06

